Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
2.
Water ; 15(6):1018, 2023.
Article in English | ProQuest Central | ID: covidwho-2284179

ABSTRACT

The emergence of new variants of SARS-CoV-2 associated with varying infectivity, pathogenicity, diagnosis, and effectiveness against treatments challenged the overall management of the COVID-19 pandemic. Wastewater surveillance (WWS), i.e., monitoring COVID-19 infections in communities through detecting viruses in wastewater, was applied to track the emergence and spread of SARS-CoV-2 variants globally. However, there is a lack of comprehensive understanding of the use and effectiveness of WWS for new SARS-CoV-2 variants. Here we systematically reviewed published articles reporting monitoring of different SARS-CoV-2 variants in wastewater by following the PRISMA guidelines and provided the current state of the art of this study area. A total of 80 WWS studies were found that reported different monitoring variants of SARS-CoV-2 until November 2022. Most of these studies (66 out of the total 80, 82.5%) were conducted in Europe and North America, i.e., resource-rich countries. There was a high variation in WWS sampling strategy around the world, with composite sampling (50/66 total studies, 76%) as the primary method in resource-rich countries. In contrast, grab sampling was more common (8/14 total studies, 57%) in resource-limited countries. Among detection methods, the reverse transcriptase polymerase chain reaction (RT-PCR)-based sequencing method and quantitative RT-PCR method were commonly used for monitoring SARS-CoV-2 variants in wastewater. Among different variants, the B1.1.7 (Alpha) variant that appeared earlier in the pandemic was the most reported (48/80 total studies), followed by B.1.617.2 (Delta), B.1.351 (Beta), P.1 (Gamma), and others in wastewater. All variants reported in WWS studies followed the same pattern as the clinical reporting within the same timeline, demonstrating that WWS tracked all variants in a timely way when the variants emerged. Thus, wastewater monitoring may be utilized to identify the presence or absence of SARS-CoV-2 and follow the development and transmission of existing and emerging variants. Routine wastewater monitoring is a powerful infectious disease surveillance tool when implemented globally.

3.
Front Med (Lausanne) ; 9: 869818, 2022.
Article in English | MEDLINE | ID: covidwho-2009875

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is believed to have originated in Wuhan City, Hubei Province, China, in December 2019. Infection with this highly dangerous human-infecting coronavirus via inhalation of respiratory droplets from SARS-CoV-2 carriers results in coronavirus disease 2019 (COVID-19), which features clinical symptoms such as fever, dry cough, shortness of breath, and life-threatening pneumonia. Several COVID-19 waves arose in Taiwan from January 2020 to March 2021, with the largest outbreak ever having a high case fatality rate (CFR) (5.95%) between May and June 2021. In this study, we identified five 20I (alpha, V1)/B.1.1.7/GR SARS-CoV-2 (KMUH-3 to 7) lineage viruses from COVID-19 patients in this largest COVID-19 outbreak. Sequence placement analysis using the existing SARS-CoV-2 phylogenetic tree revealed that KMUH-3 originated from Japan and that KMUH-4 to KMUH-7 possibly originated via local transmission. Spike mutations M1237I and D614G were identified in KMUH-4 to KMUH-7 as well as in 43 other alpha/B.1.1.7 sequences of 48 alpha/B.1.1.7 sequences deposited in GISAID derived from clinical samples collected in Taiwan between 20 April and July. However, M1237I mutation was not observed in the other 12 alpha/B.1.1.7 sequences collected between 26 December 2020, and 12 April 2021. We conclude that the largest COVID-19 outbreak in Taiwan between May and June 2021 was initially caused by the alpha/B.1.1.7 variant harboring spike D614G + M1237I mutations, which was introduced to Taiwan by China Airlines cargo crew members. To our knowledge, this is the first documented COVID-19 outbreak caused by alpha/B.1.1.7 variant harboring spike M1237I mutation thus far. The largest COVID-19 outbreak in Taiwan resulted in 13,795 cases and 820 deaths, with a high CFR, at 5.95%, accounting for 80.90% of all cases and 96.47% of all deaths during the first 2 years. The high CFR caused by SARS-CoV-2 alpha variants in Taiwan can be attributable to comorbidities and low herd immunity. We also suggest that timely SARS-CoV-2 isolation and/or sequencing are of importance in real-time epidemiological investigations and in epidemic prevention. The impact of G614G + M1237I mutations in the spike gene on the SARS-CoV-2 virus spreading as well as on high CFR remains to be elucidated.

4.
Journal of Hazardous Materials Advances ; : 100140, 2022.
Article in English | ScienceDirect | ID: covidwho-1966586

ABSTRACT

The coronavirus known as COVID-19, which causes pandemics, is causing a global epidemic at a critical stage today. Furthermore, novel mutations in the SARS-CoV-2 spike protein have been discovered in an entirely new strain, impacting the clinical and epidemiological features of COVID-19. Variants of these viruses can increase the transmission in wastewater, lead to reinfection, and reduce immunity provided by monoclonal antibodies and vaccinations. According to the research, a large quantity of viral RNA was discovered in wastewater, suggesting that wastewater can be a crucial source of epidemiological data and health hazards. The purpose of this paper is to introduce a few basic concepts regarding wastewater surveillance as a starting point for comprehending COVID-19′s epidemiological aspects. Next, the observation of Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), and Omicron (B.1.1.529) in wastewater is discussed in detail. Secondly, the essential information for the initial, primary, and final treating sewage in SARS-CoV-2 is introduced. Following that, a thorough examination is provided to highlight the newly developed methods for eradicating SARS-CoV-2 using a combination of solar water disinfection (SODIS) and ultraviolet radiation A (UVA (315-400 nm)), ultraviolet radiation B (UVB (280-315 nm)), and ultraviolet radiation C (UVC (100-280 nm)) processes. SARS-CoV-2 eradication requires high temperatures (above 56°C) and UVC. However, SODIS technologies are based on UVA and operate at cooler temperatures (less than 45°C). Hence, it is not appropriate for sewage treatment (or water consumption) to be conducted using SODIS methods in the current pandemic. Finally, SARS-CoV-2 may be discovered in sewage utilizing the wastewater-based epidemiology (WBE) monitoring method.

5.
Front Med (Lausanne) ; 9: 828402, 2022.
Article in English | MEDLINE | ID: covidwho-1775697

ABSTRACT

Objectives: The clinical outcomes of the Beta (B.1.351) variant of concern (VOC) of the SARS-CoV-2 virus remain poorly understood. In early 2021, northeastern France experienced an outbreak of Beta that was not observed elsewhere. This outbreak slightly preceded and then overlapped with a second outbreak of the better understood VOC Alpha (B.1.1.7) in the region. This situation allowed us to contemporaneously compare Alpha and Beta in terms of the characteristics, management, and outcomes of critically ill patients. Methods: A multicenter prospective cohort study was conducted on all consecutive adult patients who had laboratory confirmed SARS CoV-2 infection, underwent variant screening, and were admitted to one of four intensive care units (ICU) for acute respiratory failure between January 9th and May 15th, 2021. Primary outcome was 60-day mortality. Differences between Alpha and Beta in terms of other outcomes, patient variables, management, and vaccination characteristics were also explored by univariate analysis. The factors that associated with 60-day death in Alpha- and Beta-infected patients were examined with logistic regression analysis. Results: In total, 333 patients (median age, 63 years; 68% male) were enrolled. Of these, 174 and 159 had Alpha and Beta, respectively. The two groups did not differ significantly in terms of 60-day mortality (19 vs. 23%), 28-day mortality (17 vs. 20%), need for mechanical ventilation (60 vs. 61%), mechanical ventilation duration (14 vs. 15 days), other management variables, patient demographic variables, comorbidities, or clinical variables on ICU admission. The vast majority of patients were unvaccinated (94%). The remaining 18 patients had received a partial vaccine course and 2 were fully vaccinated. The vaccinated patients were equally likely to have Alpha and Beta. Conclusions: Beta did not differ from Alpha in terms of patient characteristics, management, or outcomes in critically ill patients. Trial Registration: ClinicalTrials.gov, identifier: NCT04906850.

6.
J Infect Chemother ; 28(7): 998-1000, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1763841

ABSTRACT

We describe a case of probable prolonged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Alpha(B.1.1.7) variant shedding for 221 days from the diagnosis, in a healthy 20-year-old Japanese pregnant woman with a normal delivery. To our knowledge, this is the longest duration of SARS-CoV-2 shedding reported in an immunocompetent individual to date.


Subject(s)
COVID-19 , Pregnancy Complications, Infectious , Adult , COVID-19/diagnosis , Female , Humans , Pregnancy , Pregnancy Complications, Infectious/diagnosis , Pregnant Women , RNA, Viral , SARS-CoV-2 , Virus Shedding , Young Adult
7.
Microbiol Spectr ; 10(2): e0217621, 2022 04 27.
Article in English | MEDLINE | ID: covidwho-1741582

ABSTRACT

In this report, we describe the development of a reverse transcription-quantitative PCR (RT-qPCR) assay, termed Alpha-Delta assay, which can detect all severe acute respiratory syndrome coronavirus 2 (SC-2) variants and distinguish between the Alpha (B.1.1.7) and Delta (B.1.617.2) variants. The Alpha- and Delta-specific reactions in the assay target mutations that are strongly linked to the target variant. The Alpha reaction targets the D3L substitution in the N gene, and the Delta reaction targets the spike gene 156 to 158 mutations. Additionally, we describe a second Delta-specific assay that we use as a confirmatory test for the Alpha-Delta assay that targets the 119 to 120 deletion in the Orf8 gene. Both reactions have similar sensitivities of 15 to 25 copies per reaction, similar to the sensitivity of commercial SC-2 detection tests. The Alpha-Delta assay and the Orf8119del assay were successfully used to classify clinical samples that were subsequently analyzed by whole-genome sequencing. Lastly, the capability of the Alpha-Delta assay and Orf8119del assay to identify correctly the presence of Delta RNA in wastewater samples was demonstrated. This study provides a rapid, sensitive, and cost-effective tool for detecting and classifying two worldwide dominant SC-2 variants. It also highlights the importance of a timely diagnostic response to the emergence of new SC-2 variants with significant consequences on global health. IMPORTANCE The new assays described herein enable rapid, straightforward, and cost-effective detection of severe acute respiratory syndrome coronavirus 2 (SC-2) with immediate classification of the examined sample as Alpha, Delta, non-Alpha, or non-Delta variant. This is highly important for two main reasons: (i) it provides the scientific and medical community with a novel diagnostic tool to rapidly detect and classify any SC-2 sample of interest as Alpha, Delta, or none and can be applied to both clinical and environmental samples, and (ii) it demonstrates how to respond to the emergence of new variants of concern by developing a variant-specific assay. Such assays should improve our preparedness and adjust the diagnostic capacity to serve clinical, epidemiological, and research needs.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , Humans , Real-Time Polymerase Chain Reaction , SARS-CoV-2/genetics , Whole Genome Sequencing
8.
Math Biosci Eng ; 19(4): 3591-3596, 2022 02 07.
Article in English | MEDLINE | ID: covidwho-1704200

ABSTRACT

In this work, we report a large-scale synchronized replacement pattern of the Alpha (B.1.1.7) variant by the Delta (B.1.617.2) variant of SARS-COV-2. We argue that this phenomenon is associated with the invasion timing and the transmissibility advantage of the Delta (B.1.617.2) variant. Alpha (B.1.1.7) variant skipped some countries/regions, e.g. India and neighboring countries/regions, which could have led to a mild first wave before the invasion of the Delta (B.1.617.2) variant, in term of reported COVID-deaths per capita.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Humans , India/epidemiology , Pandemics , SARS-CoV-2/genetics
SELECTION OF CITATIONS
SEARCH DETAIL